Тюнинг Нивы

Динамический и кинематический радиусы колеса. Радиусы колеса Для начала габаритные размеры

Динамический и кинематический радиусы колеса. Радиусы колеса Для начала габаритные размеры

Все силы, действующие на автомобиль со стороны дороги, передаются через колеса. Радиус колеса, снабженного пневматической шиной, в зависимости от веса груза, режима движения, внутреннего давления воздуха, износа протектора, может изменяться.

У колес различают следующие радиусы:

1) свободный; 3) динамический;

2) статический; 4) кинематический.

Свободный радиус (r св) - это расстояние от оси неподвижного и ненагруженного колеса до наиболее удаленной части беговой до­рожки. Для одного и того же колеса величина Rсв зависит только от величины внутреннего давления воздуха в шине.

Свободный радиус колеса указывается в технической характеристике шины. Если указанная характеристика отсутствует в справочных данных, то ее значение можно определить по маркировке шины.

Статический радиус (r ст) - это расстояние от центра неподвижного колеса, нагруженного только нормальной силой, до опорной плоскости. Значение статического радиуса меньше свободного на величину радиальной деформации:

r ст = r св - h z = r св - R z /С ш, (5.1)

где h z = R z /С ш - радиальная (нормальная) деформация шины, м;

R z - нормальная реакция дороги, Н;

С ш - радиальная (нормальная) жесткость шины, Н/м.

Нормальную реакцию дороги, действующую на одно колесо можно определить по формуле:

R z = G О / 2, (5.2)

где G О - вес автомобиля, приходящийся на определенную ось.

Из формулы (1) находим значение радиальной жесткости шины:

С ш = R z / r св - r ст, (5.3)

Радиальная жесткость шины зависит от ее конструкции и внутреннего давления воздуха р ш. Если известна зависимость С ш от р ш, то величину деформации шины можно определить при любом внутреннем давлении воздуха. При номинальном давлении воздуха и нагрузке значение статического радиуса колеса можно найти по формуле:

r ст = 0,5d о + (1 - l ш)Н ш, (5.4)

где d o - диаметр обода колеса, м;

Н ш - высота профиля шины в свободном состоянии, м;

l ш - коэффициент радиальной деформации шины.

Для шин обычного профиля, а также широкопрофильных шин l ш = 0,10 - 0,15; для арочных и пневмокатков l ш =0,20 - 0,25.

Номинальное значение r ст колеса применительно к номинальной нагрузке и внутреннему давлению воздуха указывается в технической характеристике шины.

Динамический радиус (r д) - это расстояние от центра катящегося колеса до опорной плоскости. Величина r д зависит в основном от внутреннего давления воздуха в шине, вертикальной нагрузки на колесо и скорости его движения. При увеличении скорости автомобиля динамический радиус несколько возрастает, что объясняется растяжением шины центробежными силами инерции.

Кинематический радиус (r к) - это радиус условного не дефомирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковые угловую и линейную скорости:

r к = V x /w к. (5.5)

Величину r к определяют опытным путем, для этого замеряют путь S, проходимый автомобилем за n к полных оборотов:

r к = V x /w к = V x * t /w к* t = S/2p n к, (5.6)

где V x - линейная скорость колеса;

w к - угловая скорость колеса;

t - время движения.

Разница между радиусами r д и r к обусловлена наличием проскальзывания в области контакта шины с дорогой.

В случае полного буксования колеса путь, проходимый колесом равен нулю S = 0, а следовательно r к = 0. Во время скольжения заторможенных невращающихся (блокированных) колес, т.е. при движении юзом, n к = 0 и r к ® ¥.

При движении автомобиля по дорогам с твердым покрытием и хорошим сцеплением приближенно принимают r к = r д = r с = r.

У колес автомобиля (рис. 3.4) различают следующие радиусы: статический r с, динамический r Д и радиус качения r кач.

Статическим радиусом называется расстояние от оси непод­вижного колеса до поверхности дороги. Он зависит от нагрузки, приходящейся на колесо, и давления воздуха в шине. Статичес­кий радиус уменьшается при возрастании нагрузки и снижении давления воздуха в шине, и наоборот.

Динамическим радиусом называется расстояние от оси катяще­гося колеса до поверхности дороги. Он зависит от нагрузки, дав­ления воздуха в шине, скорости движения и момента, передавае­мого через колесо. Динамический радиус возрастает при увеличении скорости движения и уменьшении передаваемого момента, и наоборот.

Радиусом качения называется отношение линейной скорости оси колеса к его угловой скорости:

Радиус качения, зависящий от нагрузки, давления воздуха в шине, передаваемого момента, пробуксовывания и проскальзывания колеса, определяется экспериментально или вычисляется по формуле

(3.13.)

где n к - число полных оборотов колеса; S К - путь, пройденный колесом за полное число оборотов.

Из выражения (3.13) следует, что при полном буксовании колеса (S k = 0) радиус качения r кач = 0, а при полном скольжении (n к = 0) г кач → оз.

Как показали исследования, на дорогах с твердым покрытием и хорошим сцеплением радиус качения, статический и динами­ческий радиусы отличаются друг от друга незначительно. Поэтому можно

При выполнении расчетов в дальнейшем будем использовать это приближенное значение. Соответствующую величину назовем радиусом колеса и обозначим r k .

Для различных типов шин радиус колеса может быть определен по ГОСТ, в котором регламентированы статические радиусы для ряда значений нагруз-

ки и давления воздуха в шинах. Кроме того, радиус колеса, м, можно рассчитать по номинальным размерам шины, используя выражение

(3.14)

Рис. 3.4. Радиусы колеса

При качении эластичного (деформированного) колеса под действием силовых факторов происходит тангенциальная деформация шины, при которой действительное расстояние от оси вращения колеса до опорной поверхности уменьшается. Это расстояние называют динамическим радиусом r д колеса. Его величина зависит от ряда конструктивных и эксплуатационных факторов, таких, например, как жесткость шины и внутреннее давление в ней, вес автомобиля, приходящейся на колесо, скорость движения, ускорение, сопротивление качению и др.

Динамический радиус уменьшается с увеличением крутящего момента и с уменьшением давления воздуха в шине. Величина r д несколько возрастает с увеличением скорости движения автомобиля вследствие роста центробежных сил. Динамический радиус колеса является плечом приложения толкающей силы. Поэтому его называют еще силовым радиусом .

Качение эластичного колеса по твердой опорной поверхности (например, по асфальтовому или бетонному шоссе) сопровождается некоторым проскальзыванием элементов протектора колеса в зоне его контакта с дорогой. Это объясняется разностью длин участков колеса и дороги, вступающих в контакт. Это явление называют упругим проскальзыванием шины, в отличие от скольжения (буксования), когда все элементы протектора смещаются относительно опорной поверхности. Упругого проскальзывания не было бы при условии абсолютного равенства этих участков. Но это возможно лишь в том случае, когда колесо и дорога имеют контакт по дуге. В действительности же, опорный контур деформированного колеса вступает в контакт с плоской поверхностью недеформированной дороги, и проскальзывание становится неизбежным.

Для учета этого явления в расчетах используют понятие кинематического радиуса колеса (радиуса качения ) r к . Таким образом, расчетный радиус качения r к представляет собой такой радиус фиктивного недеформированного колеса, которое при отсутствии проскальзывания имеет с реальным (деформированным) колесом одинаковые линейные (поступательные) скорости качения v и углового вращения ω к . То есть величина r к характеризует условный радиус, который служит для выражения расчетной кинематической зависимости между скоростью движения v автомобиля и угловой скоростью вращения колеса ω к :



Особенностью радиуса качения колеса является то, что он не может быть измерен непосредственно, а определен только теоретически. Если переписать приведенную выше формулу как:

, (τ - время)

то из полученного выражения видно, что определить величину r к можно расчетом. Для этого необходимо замерить путь S , проходимый колесом за n оборотов, и разделить его на угол поворота колеса (φ к = 2πn ).

Величина упругого проскальзывания растет при одновременном увеличении эластичности (податливости) шины и жесткости дороги или, наоборот, при увеличении жесткости шины и мягкости дороги. На мягкой грунтовой дороге повышенное давление в шине увеличивает потери на деформацию грунта. Снижение внутреннего давления в шине позволяет на мягких грунтах уменьшить перемещение частиц почвы и деформации ее слоев, что обуславливает снижение сопротивления качению и повышению проходимости.

Однако, на твердой опорной поверхности при малом давлении происходит чрезмерный прогиб шин с увеличением плеча трения качения а . Компромиссным решение данной проблемы является использование шин с регулируемым внутренним давлением.

В практических расчетах радиус качения колеса оценивается по приближенной формуле:

r к = (0,85…0,9) r 0 (здесь r 0 - свободный радиус колеса).

Для дорог с твердым покрытием (движение колеса с минимальным проскальзыванием) принимают: r к = r d .

Согласно данному Правилу в маркировку автомобильных шин вводятся дополнительные индексы скорости и их несущей способности. Некоторые индексы скорости и несущей способности автомобильных шин представлены в приведенной ниже таблице.

Некоторые индексы скорости и несущей способности автомобильных шин:

к – это полный вес автомобиля, приходящийся на одно колесо.

Примеры обозначения шин согласно Правилу 30 ЕЭК ООН:

175/80R16Q88 – шины для «Нивы»;

175/80R16СN106 – шины для «Газели».

Свободный радиус колеса

Свободный радиус r 0 – это радиус колеса, находящегося в свободном (не нагруженном) состоянии. Например, для низкопрофильной шины типа 205/70-14 78S (обозначение шины приведено согласно Правила 30 ЕЭК ООН) этот радиус отыщется как:

r 0 = 0,5 d + Н = 0,5 d +В (Н/В )10 -2 ; (100×Н/В) – серия шины; 1 дюйм равен 25,4мм , то есть:

r 0 = (0,5×14×25,4 + 205×0,7)×10 –3 = (177,8 + 143,5)×10 –3 = 0,321м .

Статический радиус колеса

Одним из определяющих факторов при проведении расчетов эксплуатационных свойств автомобиля является величина от центра колеса до опорной поверхности неподвижного колеса, нагруженного нормальной нагрузкой (вес неподвижного автомобиля). Строго говоря, учитывая, что шина эластична и при приложении нагрузки деформируется, эта величина представляет собой расстояние от центра колеса до хорды, однако в теории автомобиля эту величину принято называть статическим радиусом (r ст). В технических данных часто величина статического радиуса не приводится, а вместо нее указывается маркировка шины. Очевидно, что если обозначить диаметр обода - d , ширину профиля шины - B , процентное отношение высоты профиля шины к ее ширине (серия шины) - П , наружный диаметр шины - D , то статический радиус определится как:

Для тороидных шин:

;

Для низкопрофильных шин:

;

Для широкопрофильных шин

.

Здесь: - коэффициент радиальной деформации шины. Для шин легковых автомобилей с внутренним давлением в диапазоне 0,15 - 0,25МПа в первом приближении можно принять = 0,15, для шин грузовых автомобилей с внутренним давлением 0,5МПа = 0,1.

Свойства пневматической шины

Пневматическую шину широко применяют благодаря её амортизирующим свойствам. Они значительно смягчают толчки от неровностей дороги.

От физико-механических свойств шины зависят такие эксплуатационные показатели автомобиля, как грузоподъемность, экономичность, управляемость, проходимость и др. В конечном итоге все эти показатели определяются значением и видом деформации шины под действием внешних сил.

Различают четыре вида деформаций пневматической шины: радиальную (нормальную), окружную (тангенциальную), поперечную (боковую) и угловую.

Радиальная деформация шины измеряется её нормальным прогибомh н , равным разности свободного(r 0 ) и статического (r ст) радиусов колеса:

h н =r 0 –r ст.

Под действием статической вертикальной нагрузки (веса неподвижного автомобиля) в результате деформации эластичной конструкции шины уменьшается расстояние от оси колеса до опорной поверхности.

Нормальный прогиб – одна из важнейших характеристик шины, определяющих её нагрузочную способность и плавность хода. С увеличением прогиба повышаются напряжения в элементах конструкции шины, снижается усталостная прочность и срок её службы. Наибольшее допустимое значение нормальной нагрузки, при котором, несмотря на радиальную деформацию, обеспечивается заданный срок службы шины при заданном давлении воздуха в ней, принято называть грузоподъемностью шины. Величина нормальной нагрузки регламентирована ГОСТом или Правилами 30 ЕЭК ООН (для АТС иностранного производства).

Тип и параметры ведущих колес для автомобилей выбираются (таблица 1) в соответствии с нормальной нагрузкой на них. Стандартом предусмотрено несколько допустимых нагрузок на шину в зависимости от давления воздуха в ней. При выборе шины для рассчитываемой машины необходимо руководствоваться следующим правилом. Полученная расчетом нормальная нагрузка на шину не должна превышать максимально допустимую по стандарту при наименьшем давлении воздуха в ней из числа значений предусмотренных стандартом.

При определении нагрузки на ведущее колесо следует предусмотреть максимально возможную загруженность в эксплуатации машины с учетом её технологического назначения.

При равномерном статическом распределении веса автомобиля по осям максимальную нагрузку на одно колесо следует определять, исходя из возможного её перераспределения в эксплуатации. В этом случае учитывается нагрузка на ведущее колесо от силы тяжести автомобиля и перевозимого груза, а также от вертикальной составляющей тягового усилия на сцепке прицепа.

Параметры выбранной шины сверяют с типом и параметрами ведущих колес у машины-прототипа. При сопоставлении параметров выбранного колеса и колеса прототипа следует иметь в виду, что заводы-изготовители грузовых автомобилей иногда применяют увеличенный размер шин (если позволяют предъявляемые к автомобилю требования). «Переразмеренные» шины более долговечны, оказывают меньшее давление на почву и придают машине более высокие тяговые свойства. Применение подобных шин наиболее целесообразно на грузовых автомобилях, эксплуатирующихся на грунтовых дорогах или дорогах с плохим покрытием.

Таблица 1.

Параметры автомобильных шин (ГОСТ 7463-89)

Автомобиль

Колесная формула

Обозначение шины

Давление в шинах, МПа : пер./задн.

Нормальный прогиб шины h н обусловлен её деформацией не только в радиальном, но и в окружном и в поперечном направлениях. При этом 40% полной нагрузки сжатия шины затрачивается на деформацию её материала и 60% - на сжатие воздуха.

Различают шины низкого, среднего и высокого давления . Шины низкого давления имеют увеличенный объем воздуха, меньшее число слоев корда. Они мягче воспринимают толчки от неровностей дороги и обладают лучшими амортизирующими свойствами, но при меньшей грузоподъемности. Для шин низкого и среднего давления допустимая нормальная деформация шины составляет 15…20% её высоты, а для шин высокого давления – 10…12%.

В связи с большим многообразием видов деформации пневматической шины ее радиус не имеет одного определенного значения, как у колеса с жестким ободом.

Различают следующие радиусы качения колеса с пневматической шиной: свободный г 0 , статический r cv динамический г а и кинематический г к.

Свободный радиус г 0 - это наибольший радиус беговой дорожки колеса, свободного от внешней нагрузки. Он равен расстоянию от поверхности беговой дорожки до оси колеса.

Статический радиус г ст представляет собой расстояние от оси неподвижного колеса, нагруженного нормальной нагрузкой, до плоскости его опоры. Значения статического радиуса при максимальной нагрузке регламентированы стандартом для каждой шины.

Динамический радиус г я - это расстояние от оси движущегося колеса до точки приложения результирующей элементарных реакций почвы, действующих на колесо.

Статический и динамический радиусы уменьшаются с увеличением нормальной нагрузки и с уменьшением давления воздуха в шине. Зависимость динамического радиуса от нагрузки моментом, полученная экспериментально Е.А. Чудаковым, показана на рис. 9, а, график 1. Из рисунка видно, что с увеличением момента М веа, передаваемого колесом, его динамический радиус уменьшается. Это объясняется тем, что расстояние по вертикали между осью колеса и его опорной поверхностью уменьшается вследствие деформации скручивания боковины шины. Кроме того, под действием крутящего момента возникает не только касательная сила, но и нормальная составляющая, которая стремится прижать колесо к поверхности дороги.

Рис. 9. Зависимости, полученные Е.А. Чудаковым: а - изменение динамического (Я и кинематического (2) радиусов колеса в зависимости от ведущего момента: б - изменение кинематического радиуса колеса под действием ведущего и тормозного моментов

Величина динамического радиуса зависит также от глубины колеи при движении по деформируемому грунту или почве. Чем больше глубина колеи, тем меньше динамический радиус. Динамический радиус колеса является плечом приложения касательной реакции почвы, толкающей ведущее колесо. Поэтому динамический радиус называют еще силовым.

Кинематический радиус или радиус качения колеса - это поделенный на действительный путь колеса пройденный за один оборот. Еще кинематический радиус определяют как радиус такого фиктивного колеса с жестким ободом, которое при отсутствии пробуксовывания и проскальзывания имеет одинаковую с действительным колесом угловую скорость вращения и поступательную скорость:

где v K - поступательная скорость качения колеса; со к - угловая скорость вращения колеса; S K - путь колеса за один оборот с учетом буксования или скольжения.

Из выражения (5) следует, что при полном буксовании колеса (v K = 0) радиус г к = 0, а при полном скольжении (со к = 0) кинематический радиус равен ©о.

На рис. 9, а (график 2) представлена полученная Е.А. Чудаковым зависимость изменения кинематического радиуса колеса от действия на него крутящего момента М вед. Из рисунка следует, что величина изменения динамического и кинематического радиусов в зависимости от действия момента разная. Более крутая зависимость кинематического радиуса колеса по сравнению с зависимостью динамического радиуса может быть объяснена действием на него двух факторов. Во-первых, кинематический радиус уменьшается на ту же величину, на которую уменьшается динамический радиус от действия ведущего момента, как показано на рис. 9, я, график /. Во-вторых, приложенный к шине ведущий или тормозной момент вызывает деформацию сжатия или растяжения набегающей части шины. Сопровождающие эти деформации процессы легко проследить, если представить колесо в виде цилиндрической упругой спирали с равномерной навивкой витков. Как показано на рис. 10, а, под действием ведущего момента набегающая часть шины (передней) сжимается, вследствие чего общий периметр окружности протектора шины уменьшается, путь колеса S K за один оборот становится меньше. Чем больше деформация сжатия шины в набегающей части, тем больше снижение пути S K , что в соответствии с (5) пропорционально уменьшению кинематического радиуса г к.

При действии тормозного момента происходит обратное явление. К опорной поверхности подходят растянутые элементы шины

(рис. 10, б). Периметр шины и путь колеса S K , проходимый за один его оборот, возрастают по мере увеличения тормозного момента. Поэтому кинематический радиус увеличивается.

Рис. 10. Схема деформации шины от действия моментов М вед (а) и М т (б)

На рис. 9, б показана зависимость изменения радиуса колеса от действия на него крутящего активного Л/ вед и тормозного М 1 моментов при устойчивом сцеплении колеса с опорной поверхностью. Е.А. Чудаков предложил следующую формулу для определения радиуса колеса:

где г к 0 - радиус качения колеса при свободном режиме качения, когда ведущий момент и момент сопротивления качению равны между собой; А, т - коэффициент тангенциальной эластичности шины, зависящий от ее типа и конструкции, который находят по результатам экспериментов.

При инженерных расчетах в качестве динамического и кинематического радиусов обычно используют приведенный в стандарте статический радиус данной шины при установленном давлении воздуха и максимальной нагрузке на нее. Принимают, что колесо движется по несминаемой поверхности.

При движении по колее статический радиус - это расстояние от оси колеса до дна колеи. Однако при движении колеса по колее точка приложения равнодействующей элементарных реакций почвы, образовывающая крутящий момент (ведущий или сопротивления), будет находиться выше дна колеи и ниже поверхности почвы (см. рис. 17). Динамический радиус в этом случае зависит от глубины колеи: чем она глубже, тем больше разница между статическим и динамическим радиусами колес, тем больше погрешность расчетов от допущения г л = г ст